Let S be a connected, compact, orientable surface with a finite non-empty set of marked points. A polygonalisation of S is a multi-arc on S connecting marked points which decomposes S into polygons. The polygonalisation complex $\mathcal{P}(S)$ of S is a cube complex (has a decomposition into Euclidean cubes glued along their faces by isometries) whose vertices are polygonalisations (two vertices are connected by an edge if they differ by a single arc). The polygonalisation complex $\mathcal{P}(S)$ contains the flip graph $\mathcal{F}(S)$ as a subcomplex whose vertices are triangulations of S (two triangulations are connected by an edge if they differ by a flip, replacing a diagonal of a quadrilateral of a triangulation by the other diagonal). The mapping class group $\text{Mod}(S)$ acts on both $\mathcal{P}(S)$ and $\mathcal{F}(S)$; since, in general, $\text{Mod}(S)$ is not a CAT(0) group \[M. \text{ Kapovich and B. Leeb, Math. Ann. 306, No. 2, 341–352 (1996; Zbl 0856.20024)} \], $\mathcal{P}(S)$ is not a CAT(0) cube complex (a cube complex is non-positively curved if it satisfies Gromov’s link condition, and it is CAT(0) if it is non-positively curved and simply connected).

The authors characterize the vertices where Gromov’s link condition fails and use this for proving that, generically, $\text{Mod}(S)$ is the automorphism group of $\mathcal{P}(S)$ (it is known to be the automorphism group of the flip graph $\mathcal{F}(S)$). They show that $\mathcal{P}(S)$ has many properties of a CAT(0) cube complex, and in particular a rich hyperplane structure closely related to the arc graph $\mathcal{A}(S)$ (again with automorphism group $\text{Mod}(S)$; arcs are connected by an edge here if they are disjoint). The authors show that there is a natural one-to-one correspondence between the hyperplanes of $\mathcal{P}(S)$ and the arcs on S. Applying rigidity results for arc graphs, they also show that, generically, different surfaces have different polygonalisation complexes.

Reviewer: Bruno Zimmermann (Trieste)

MSC: 57M50 General geometric structures on low-dimensional manifolds

Keywords: polygonalisation of a surface; cube complex; mapping class group of a surface; flip graph; arc graph of a surface

Software: fatter

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.