Ouahada, Khmaies; Ferreira, Hendrik C.

Summary: A New graph distance concept introduced for certain coding techniques helped in their design and analysis as in the case of distance-preserving mappings and spectral shaping codes. A graph theoretic construction, mapping binary sequences to permutation sequences and inspired from the k-cube graph has reached the upper bound on the sum of the distances for certain values of the length of the permutation sequence. The new introduced distance concept in the k-cube graph helped better understanding and analyzing for the first time the concept of distance-reducing mappings. A combination of distance and the index-permutation graph concepts helped uncover and verify certain properties of spectral null codes, which were previously difficult to analyze.

MSC:
94B05 Linear codes (general theory)
94B10 Convolutional codes
94C15 Applications of graph theory to circuits and networks
94A24 Coding theorems (Shannon theory)

Keywords:
graph theory; distance mappings; spectral codes; cube graph; index permutation graph

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.