Nana, C.; Sehba, B. F.

Let $D = \mathbb{R}^n + i\Omega$, $n \geq 3$, be the tube domain over an irreducible symmetric cone Ω in \mathbb{R}^n of rank r with the determinant function Δ. One of the main results of the paper concerns Toeplitz operators from a Bergman space $A_p^\alpha(D)$ into a Besov space $B_q^\beta(D)$. For a positive Borel measure μ on D, and $\nu > m := n/r - 1$, a Toeplitz operator T_ν^μ is the integral operator defined for any function f with compact support by

$$T_\nu^\mu f(z) = \int_D K_\nu(z, w)f(w)d\mu(w),$$

where K_ν is the weighted Bergman kernel.

Theorem 2.1. Suppose that $q \geq 2$, $1 < p \leq q < \infty$, and

$$\alpha, \beta, \nu > m, \quad \beta + \frac{q(\nu - \beta)}{q - 1} > m, \quad \nu > m + \frac{\beta - m}{q} - \frac{\alpha - m}{p}.$$

Define the numbers

$$\lambda = 1 + \frac{1}{p} - \frac{1}{q}, \quad \gamma = \lambda^{-1} \left(\nu + \frac{\alpha}{p} - \frac{\beta}{q} \right).$$

The following conditions are equivalent.

(i) The operator T_μ^ν extends to a bounded operator from $A_p^\alpha(D)$ to $B_q^\beta(D)$;

(ii) There is a constant $C > 0$ such that for any $\delta \in (0, 1)$ and any $z \in D$ we have

$$\mu(B_\delta(z)) \leq C \Delta^{\lambda(\gamma + m + 1)}(Im z).$$

The boundedness of Toeplitz operators between Bergman spaces on the unit ball was studied earlier by Pau and Zhao. The authors adapt their idea to the case of the tube domains over irreducible cones.

Reviewer: Leonid Golinskii (Kharkov)

MSC:

32A35 H^p-spaces, Nevanlinna spaces of functions in several complex variables
32A07 Special domains in \mathbb{C}^n (Reinhardt, Hartogs, circular, tube) (MSC2010)
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators

Keywords:

symmetric cone; Bergman space; Besov space; Bergman projection; Hankel operator; Toeplitz operator

Full Text: DOI arXiv

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.