Shang, Yilun
Isoperimetric numbers of randomly perturbed intersection graphs. (English) Zbl 1425.05144

Summary: Social networks describe social interactions between people, which are often modeled by intersection graphs. In this paper, we propose an intersection graph model that is induced by adding a sparse random bipartite graph to a given bipartite graph. Under some mild conditions, we show that the vertex-isoperimetric number and the edge-isoperimetric number of the randomly perturbed intersection graph on n vertices are $\Omega(1/\ln n)$ asymptotically almost surely. Numerical simulations for small graphs extracted from two real-world social networks, namely, the board interlocking network and the scientific collaboration network, were performed. It was revealed that the effect of increasing isoperimetric numbers (i.e., expansion properties) on randomly perturbed intersection graphs is presumably independent of the order of the network.

MSC:
05C80 Random graphs (graph-theoretic aspects)
05C40 Connectivity
05C90 Applications of graph theory
91D30 Social networks; opinion dynamics

Keywords:
isoperimetric number; random graph; intersection graph; social network

Full Text: DOI

References:
[12] Kendall, M.; Martin, K.M.; Graph-theoretic design and analysis of key predistribution schemes; Des. Codes Cryptogr.: 2016; Volume 81 ,11-34. - Zbl 1379.94043

[29] Flaxman, A.D.; Expansion and lack thereof in randomly perturbed graphs; Internet Math.: 2007; Volume 4 ,131-147. - Zbl 1238.05245

[34] Böttcher, J.; Montgomery, R.; Parczyk, O.; Person, Y.; Embedding spanning bounded degree subgraphs in randomly perturbed graphs; Electron. Notes Discrete Math.: 2017; Volume 61 ,155-161. - Zbl 1378.05111

[37] Seierstad, C.; Opsahl, T.; For the few not the many? The effects of affirmative action on presence, prominence, and social capital of women directors in Norway; Scand. J. Manag.: 2011; Volume 27 ,44-54.

[38] Krivelevich, M.; Nachmias, A.; Coloring complete bipartite graphs from random lists; Random Struct. Algorithms: 2006; Volume 29 ,436-449. - Zbl 1110.05035

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.