Stibitz, Charlie; Zhuang, Ziquan

K-stability of birationally superrigid Fano varieties. (English) [Zbl 1425.14035]

Compos. Math. 155, No. 9, 1845-1852 (2019; Zbl 1425.14035)

Let X be a \mathbb{Q}-Fano variety (i.e. X has klt singularities and the \mathbb{Q}-divisor $-K_X$ is ample) over \mathbb{C} with Picard number one. Recall that the alpha invariant $\alpha(X)$ of X is the supremum of all $t > 0$ such that the pair (X, tD) is log canonical for every \mathbb{Q}-divisor $D \sim_{\mathbb{Q}} -K_X$. Suppose also that X is birationally superrigid (or, more generally, K_X is lc for every movable boundary $M \sim_{\mathbb{Q}} -K_X$). In the paper under review, the authors prove (see Theorem 1.2 in the text) that if $\alpha(X) \geq \frac{1}{2}$ (resp. $\alpha(X) > \frac{1}{2}$), then X is K-semistable (resp. K-stable). This generalizes in particular the result of K. Fujita [J. Inst. Math. Jussieu 18, No. 3, 519–530 (2019; Zbl 1409.14008)] that a smooth hypersurface $X \subset \mathbb{P}^n$ of degree $n \geq 4$ is K-stable. Furthermore, the authors also prove (Theorem 1.6) that if K_X generates the class group of X and the linear system $| -K_X|$ is free, then $\alpha(X) \geq 1/(n + 1)$. Some other applications can be traced in the text.

Let F be a simple divisorial valuation on X. One may identify F with a prime divisor on a birational model $\pi : Y \longrightarrow X$. Recall that F is called dreamy if the graded algebra

$$\bigoplus_{k,j \in \mathbb{Z}_{\geq 0}} H^0(Y, -k r \pi^* K_X - j F)$$

is finitely generated for some r such that rK_X is Cartier. Then X is K-semistable (resp. K-stable) iff

$$\beta(F) := A_X(F) \cdot ((-K_X)^n) - \int_0^\infty \text{vol}_X(-K_X - xF)dx \geq 0$$

(resp. > 0) for all simple F (see K. Fujita [J. Reine Angew. Math. 751, 309–338 (2019; Zbl 1435.14039]) and C. Li [Duke Math. J. 166, No. 16, 3147–3218 (2017; Zbl 1409.14008)])]. Here $A_X(F)$ is the log discrepancy of F and $\text{vol}_X(-K_X - xF) := \text{vol}_Y(-\pi^* K_X -xF)$.

The proof proceeds by assuming that $\beta(F) < 0$ for some F as above. This is then brought to contradiction with $\alpha(X) \geq \frac{1}{2}$ similarly as in [K. Fujita, Kyoto J. Math. 59, No. 2, 399–418 (2019; Zbl 1419.14065)]. The claim about $\alpha(X) \geq 1/(n + 1)$ is proved by showing that $\text{lt}(X, D) \geq 1/(n + 1)$ for every irreducible $D \sim_{\mathbb{Q}} -K_X$. Namely, the pair (X, D) is lc in codimension 1 because K_X generates the class group, which implies that the multiplier ideal $\mathcal{J}(X, (1 - \epsilon)D)$, $0 < \epsilon \ll 1$, defines a subscheme of codimension ≥ 2. Then by Nadel’s vanishing, $H^i(X, \mathcal{J}(X, (1 - \epsilon)D) \otimes \mathcal{O}_X(-rK_X)) = 0$, all $i > 0$, $r \geq 0$, which yields (by Castelnuovo-Mumford regularity) the movable linear system

$$\mathcal{M} := \mathcal{J}(X, (1 - \epsilon)D) \otimes \mathcal{O}_X(-nK_X)].$$

Now, assuming that $\text{lt}(X, D) < 1/(n + 1)$ for a given D, one easily gets that (X, M) is not lc for the movable boundary $M = (1/n)\mathcal{M}$, a contradiction.

Reviewer: Ilya Karzhemanov (Moscow)

MSC:

14J45 Fano varieties
14E05 Rational and birational maps
32Q20 Kähler-Einstein manifolds

Keywords:

K-stability; birational superrigidity; Kähler-Einstein metrics; Fano varieties

Full Text: DOI arXiv
References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.