Alekseev, Anton; Naef, Florian
Goldman-Turaev formality from the Knizhnik-Zamolodchikov connection. (Connexion de Knizhnik-Zamolodchikov et formalité pour la bigèbre de Lie de Goldman-Turaev.) (English. French summary) [Zbl 1425.17029]

Summary: For an oriented 2-dimensional manifold Σ of genus g with n boundary components, the space $C\pi_1(\Sigma)/[C\pi_1(\Sigma), C\pi_1(\Sigma)]$ carries the Goldman-Turaev Lie bialgebra structure defined in terms of intersections and self-intersections of curves. Its associated graded Lie bialgebra (under the natural filtration) is described by cyclic words in $H_1(\Sigma)$ and carries the structure of a necklace Schedler Lie bialgebra. The isomorphism between these two structures in genus zero has been established in [G. Massuyeau, Quantum Topol. 9, No. 1, 39–117 (2018; Zbl 1393.57016)] using Kontsevich integrals and in [A. Alekseev et al., Adv. Math. 326, 1–53 (2018; Zbl 1422.57053)] using solutions of the Kashiwara-Vergne problem.

In this note, we give an elementary proof of this isomorphism over \mathbb{C}. It uses the Knizhnik-Zamolodchikov connection on $\mathbb{C}\{z_1, \ldots, z_n\}$. We show that the isomorphism naturally depends on the complex structure on the surface. The proof of the isomorphism for Lie brackets is a version of the classical result by N. Hitchin [NATO ASI Ser., Ser. C, Math. Phys. Sci. 488, 69–112 (1997; Zbl 0867.53027)]. Surprisingly, it turns out that a similar proof applies to cobrackets.

Furthermore, we show that the formality isomorphism constructed in this note coincides with the one defined in [Alekseev (loc. cit.)] if one uses the solution of the Kashiwara-Vergne problem corresponding to the Knizhnik-Zamolodchikov associator.

MSC:
17B62 Lie bialgebras; Lie coalgebras
17B70 Graded Lie (super)algebras

Full Text: DOI arXiv

References:
 English translation: · Zbl 0422.57005

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically
matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original
paper as accurately as possible without claiming the completeness or perfect precision of the matching.