Two lower bounds for generalized 3-connectivity of Cartesian product graphs.

Summary: The generalized k-connectivity $\kappa_k(G)$ of a graph G, which was introduced by G. Chartrand et al. ["Generalized connectivity in graphs", Bull. Bombay Math. Colloq. 2, 1–6 (1984)] is a generalization of the concept of vertex connectivity. Let G and H be nontrivial connected graphs. In [Ars Comb. 104, 65–79 (2012; Zbl 1274.05267)], S. Li et al. gave a lower bound for the generalized 3-connectivity of the Cartesian product graph $G \square H$ and proposed a conjecture for the case that H is 3-connected. In this paper, we give two different forms of lower bounds for the generalized 3-connectivity of Cartesian product graphs. The first lower bound is stronger than theirs, and the second confirms their conjecture.

MSC:
05C76 Graph operations (line graphs, products, etc.)
05C40 Connectivity
05C05 Trees

Keywords:
connectivity; generalized connectivity; Cartesian product

Full Text: DOI arXiv

References:

[7] Li, S.; Li, X.; Shi, Y., The minimal size of a graph with generalized connectivity $\lceil \kappa x \rceil _3 \geq 2$, australas. J. Comb., 51, 209-220, (2011)
[8] Li, S.; Li, W.; Shi, Y.; Sun, H., On minimally 2-connected graphs with generalized connectivity $\lceil \kappa x \rceil _3 = 2$, J. Comb. Optim., 34, 141-164, (2017) · Zbl 1410.05107
[10] Li, S.; Li, X.; Zhou, W., Sharp bounds for the generalized connectivity $\lceil \kappa x \rceil _3 (\lceil \kappa g \rceil)$, Discret. Math., 310, 2147-2163, (2010) · Zbl 1258.05057

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.