Li, Hengzhe; Wang, Jiajia

Summary: Let S be a set of at least two vertices in a graph G. A subtree T of G is an S-Steiner tree if $S \subseteq V(T)$. Two S-Steiner trees T_1 and T_2 are edge-disjoint (resp. internally disjoint) if $E(T_1) \cap E(T_2) = \emptyset$ (resp. $E(T_1) \cap E(T_2) = \emptyset$ and $V(T_1) \cap V(T_2) = S$). Let $\lambda_G(S)$ (resp. $\kappa_G(S)$) be the maximum number of edge-disjoint (resp. internally disjoint) S-Steiner trees in G, and let $\lambda_k(G)$ (resp. $\kappa_k(G)$) be the minimum $\lambda_G(S)$ (resp. $\kappa_G(S)$) for S ranges over all k-subsets of $V(G)$. Clearly, $\lambda_2(G)$ (resp. $\kappa_2(G)$) is the classical edge-connectivity $\lambda(G)$ (resp. connectivity $\kappa(G)$). In this paper, we study the λ_3-connectivity and κ_3-connectivity of a recursive circulant G, determine $\lambda_3(G) = \delta(G) - 1$ for each recursive circulant G, and $\kappa_3(G) = \delta(G) - 1$ for each recursive circulant G except $G \cong G(2^n, 2)$.

MSC:
05C40 Connectivity
05C05 Trees
05C76 Graph operations (line graphs, products, etc.)

Keywords:
recursive circulant; λ_3-connectivity; κ_3-edge-connectivity

Full Text: DOI

References:
[1] Bondy, J. A.; Murty, U. S.R., Graph Theory, GTM 244 (2008), Springer - Zbl 1134.05001
[9] Hind, H.; Oellermann, O., Menger-type results for three or more vertices, Congressus Numerantium, 13, 179-204 (1996) - Zbl 0974.05007
[16] Li, S.; Li, X.; Zhou, W., Sharp bounds for the generalized connectivity $\lambda_3(g)$, Discrete Math., 310, 2147-2163 (2010) - Zbl 0096.17903