Jiang, Renjin; Li, Kangwei; Xiao, Jie
Flow with $A\infty(\mathbb{R})$ density and transport equation in BMO(\mathbb{R}). (English) Zbl 1428.42035

Summary: We show that, if $b \in L^1(0,T;L^1_{\text{loc}}(\mathbb{R}))$ has a spatial derivative in the John-Nirenberg space BMO(\mathbb{R}), then it generates a unique flow $\phi(t,\cdot)$ which has an $A\infty(\mathbb{R})$ density for each time $t \in [0,T]$. Our condition on the map b is not only optimal but also produces a sharp quantitative estimate for the density. As a killer application we achieve the well-posedness for a Cauchy problem of the transport equation in BMO(\mathbb{R}).

MSC:
42B30 H^p-spaces
42B37 Harmonic analysis and PDEs
82C70 Transport processes in time-dependent statistical mechanics
30C65 Quasiconformal mappings in \mathbb{R}^n, other generalizations
35Q70 PDEs in connection with mechanics of particles and systems of particles

Keywords:
quasiconformal mapping; BMO functions

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.