Upsilon-like concordance invariants from \mathfrak{s}_n knot cohomology. (English) Zbl 1428.57008

The authors define new knot concordance invariants from (specific deformations of) Khovanov-Rozansky \mathfrak{s}_n-homologies. This invariant, called Υ_n, is analogous to the Ozsváth-Stipsicz-Szabó Υ invariant from [P. S. Ozsváth et al., Adv. Math. 315, 366–426 (2017; Zbl 1383.57020)]. Furthermore, they provide examples where Υ_n can be used to obstruct sliceness and concordance to alternating links, whereas Υ and other known invariants fail. Finally, the two authors define a new concordance invariant S, which is a direct summand of the equivariant Khovanov-Rozansky complex, called the equivariant Rasmussen invariant. This invariant 'dominates' a number of known concordance invariants arising from Khovanov-Rozansky homologies.

To sketch the construction of Υ_n we start by reviewing the construction of Υ. In knot Floer homology one can 'blend' the algebraic and the Alexander filtrations on $\text{CFK}^-(K)$ into a unique filtration which depends on a parameter $t \in [0, 2]$. The least possible filtered degree (in homology) where one can find non-trivial elements gives the value of $\Upsilon_K(t)$. The construction of the invariant Υ_n proceeds in a similar, albeit different, way. Once a potential (i.e. a monic polynomial of degree n) is fixed one can define a deformation of Khovanov-Rozansky \mathfrak{s}_n-homology with respect to the chosen potential. In this case we pick the potential to be $x^n - x^{n-1}$, then there is a well defined (diagram dependent) chain ψ_D. Similarly to the case of knot Floer homology, one 'blends' the quantum and x-filtration on the deformed complex into a unique, t-dependent, filtration. The value of $\Upsilon_n(K)(t)$ is the least possible filtered degree where the homology class of $[\psi_D]$ does not vanish.

Similarly to Υ, the invariant Υ_n is a piecewise linear function, and provides a lower bound on the slice genus. However, differently from Υ, the function Υ_n in not a concordance homomorphism (but a quasi-homomorphism), and provides highly non trivial information for quasi-alternating knots.

Finally, towards the end of the paper the authors prove that (i) the stable (i.e. up to acyclic summands) homotopy type of the equivariant Khovanov-Rozansky homology is a link invariant, and (ii) the existence of the equivariant Rasmussen invariant S. Fact (i) is a weaker analogue of the concordance invariance of the knot Floer chain complex up to stable homotopy, due to J. Hom [J. Knot Theory Ramifications 26, No. 2, Article ID 1740015, 24 p. (2017; Zbl 1360.57002)]. While fact (ii) is reminescent (and can be seen as a partial extension of) the work of J. Pardon concerning the Khovanov-Lee homology of links [Algebr. Geom. Topol. 12, No. 2, 1081–1098 (2012; Zbl 1263.57007)].

Reviewer: Carlo Collari (Abu Dhabi)

MSC:
57K18 Homology theories in knot theory (Khovanov, Heegaard-Floer, etc.)
57K10 Knot theory

Keywords:
knot concordance; upsilon invariant; Khovanov-Rozansky cohomology

Full Text: DOI

References:
[5] 10.1016/j.topol.2015.05.034 · Zbl 1330.57008 · doi:10.1016/j.topol.2015.05.034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.