Summary: In this paper, we study the model-checking problem of linear-time properties in multi-valued systems. Safety properties, invariant properties, liveness properties, persistence and dual-persistence properties in multi-valued logic systems are introduced. Some algorithms related to the above multi-valued linear-time properties are discussed. The verification of multi-valued regular safety properties and multi-valued ω-regular properties using lattice-valued automata are thoroughly studied. Since the law of non-contradiction (i.e., $a \land \neg a = 0$) and the law of excluded-middle (i.e., $a \lor \neg a = 1$) do not hold in multi-valued logic, the linear-time properties introduced in this paper have new forms compared to those in classical logic. Compared to those classical model-checking methods, our methods to multi-valued model checking are accordingly more direct: We give an algorithm for showing $TS \models P$ for a model TS and a linear-time property P, which proceeds by directly checking the inclusion $\text{Traces}(TS) \subseteq P$ instead of $\text{Traces}(TS) \cap \neg P = \emptyset$. A new form of multi-valued model checking with membership degree is also introduced. In particular, we show that multi-valued model checking can be reduced to classical model checking. The related verification algorithms are also presented. Some illustrative examples and a case study are also provided.

MSC:

- 68Q60 Specification and verification (program logics, model checking, etc.)
- 03B50 Many-valued logic
- 68Q45 Formal languages and automata
- 68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)

Keywords:

- model checking; multi-valued transition system; invariant; safety; liveness; lattice-valued finite automaton

Software:

- SPIN

Full Text: DOI

References:

[7] Chechik, M., On Interpreting Results of Model-Checking with Abstraction (2000), University of Toronto, Department of Computer Science, CSRG technical report 417
[19] Godefroid, P.; Jagadeesan, R., On the expressiveness of 3-valued models, Proceedings of the 4th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI03), Proceedings of the 4th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI03), Lecture Notes in Computer Science, 2575, 206-222 (2003), Springer
[22] Hazelhurst, S., Compositional Model Checking of Partially Ordered State Spaces (1996), Department of Computer Science, University of British Columbia, Phd thesis
[34] Li, Y. M.; Pedrycz, W., Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoids, Fuzzy Sets Syst., 156, 68-92 (2005)
[35] Li, Y. M.; Pedrycz, W., Minimization of lattice finite automata and its application to the decompositon of lattice languages, Fuzzy Sets Syst., 158, 1423-1436 (2007)
[38] Li, Y.; Li, Y.; Ma, Z., Computation tree logic model checking based on possibility measures, Fuzzy Sets Syst., 262, 44-59 (2015)