We define each pair ε algebra.

Given a multiplicatively antisymmetric $n \times n$ matrix q over an algebraically closed field k, we can construct the q-commutative power series ring $R = k_q[[x_1, \ldots, x_n]]$ and Laurent series ring $L = k_q[[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]]$, with multiplication given by $x_ix_j = q_{ij}x_jx_i$. In the present study, each q_{ij} is assumed to be a root of unity, in which case it follows that R is finite over its center, and so must be a polynomial identity (PI) algebra.

Let ε be a generator of the multiplicative cyclic group $\langle q_{ij} \rangle$, and define ℓ to be the order this group. For each pair i, j of indices such that $1 \leq i, j \leq n$, we select h_{ij} such that $q_{ij} = \varepsilon^{h_{ij}}$. Using the matrix (h_{ij}), we can define a homomorphism $H : \mathbb{Z}^n \to (\mathbb{Z}/\ell\mathbb{Z})^n$. We then define h to be the cardinality of the image of H. The authors demonstrate that H has PI degree \sqrt{h} and L is an Azumaya algebra of PI degree \sqrt{h}.

We define $\sigma : \mathbb{Z}^n \times \mathbb{Z}^n \to k^\times$ to be the alternating bicharacter given by $\sigma(s, t) = \prod_{i=1}^n q_{ij}^{s_i t_j}$. Using this, we can then define a free abelian subgroup of \mathbb{Z}^n by $S = \{s \in \mathbb{Z}^n \mid \sigma(s, t) = 1 \text{ for all } t \in \mathbb{Z}^n\}$. Let b_1, \ldots, b_n be a \mathbb{Z}-basis for S, and let B denote the $n \times n$ matrix whose ith row is b_i. We call the basis b_1, \ldots, b_n positive diagonal if B is a diagonal matrix whose diagonal entries are all positive.

Using this terminology, the authors state and prove their main result. In particular, if b_1, \ldots, b_n is a \mathbb{Z}-basis for S, and $z_i = x^{b_i}$ for each index i, then the following conditions are equivalent:

(i) b_1, \ldots, b_n positive diagonal basis for S (after reordering, if necessary),
(ii) $Z(L)$ is a commutative Laurent series ring over k in z_1, \ldots, z_n and
(iii) $Z(R)$ is a commutative power series ring over k in z_1, \ldots, z_n.

Reviewer: Edward Mosteig (Los Angeles)

MSC:

16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
16L30 Noncommutative local and semilocal rings, perfect rings
16S34 Group rings

Keywords:

skew power series; skew Laurent series; q-commutative

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.