Let G be a complex reductive group with parabolic subgroup P. Let n denote the nilpotent radical of the Lie algebra of P. For a nilpotent element x in the Lie algebra of G, the associated Spaltenstein variety is

$$X^P_x := \{ gP \in G/P \mid g^{-1}xg \in n \}.$$

In general, a Spaltenstein variety is not irreducible, and a longstanding question is whether they are pure dimensional (or equidimensional). This is known to hold in the case that P is a Borel subgroup or if G is the general linear group. On the other hand, N. Spaltenstein [Classes unipotentes et sous-groupes de Borel. Berlin-Heidelberg-New York: Springer-Verlag (1982; Zbl 0486.20025)] constructed a counterexample for a special orthogonal group. The main result of this paper is that X^P_x is pure dimensional if G is classical and x is an even or odd partition.

In fact, a stronger result is shown. Consider a Richardson element e of the Lie algebra of G and the associated nilpotent orbit O_e. There is a partial resolution of singularities $\pi: T^*(G/P) \to O_e$, where $T^*(G/P)$ denotes the cotangent bundle of G/P. Consider the Slodowy slice S_e associated to e and set $S_{e,x} = \pi^{-1}(S_{e,x})$. Then the author shows that X^P_x is Lagrangian in $S_{e,x}$, giving the (pure) dimension of X^P_x to be $\frac{1}{2} \dim T^*(G/P) - \frac{1}{2} \dim O_e$.

This is done by working in a symplectic geometry setting. A key component is a result of V. Ginzburg [Sémin. Congr. 24, 145–219 (2012; Zbl 1305.16009)] involving \mathbb{C}^*-actions on varieties. Given a smooth symplectic algebraic variety \bar{Y} and affine variety Y with \mathbb{C}^*-actions, along with a proper morphism $p: \bar{Y} \to Y$ that preserves the action, Ginzburg’s result gives conditions under which the inverse of the \mathbb{C}^*-fixed point locus of Y is Lagrangian in \bar{Y}. The author frames the problem of interest in a more general context, allowing the use of Nakajima quiver varieties and their σ-quiver variants; a notion introduced in earlier work of the author [Represent. Theory 23, 1–56 (2019; Zbl 1403.16009)]. Lastly the author illustrates the result with several examples, including a renewed look at examples considered in the aforementioned work of Spaltenstein.

Reviewer: Christopher P. Bendel (Menomonie)