Huang, Li-Ping; Lv, Benjian; Wang, Kaishun
Automorphisms of Grassmann graphs over a residue class ring. (English)
Discrete Math. 343, No. 4, Article ID 111693, 10 p. (2020).

Summary: Let \mathbb{Z}_{p^s} be the residue class ring of integers modulo p^s, where p is a prime number and s is a positive integer. The Grassmann graph over \mathbb{Z}_{p^s}, denoted by $G(n, m, p^s)$, has the vertex set all m-subspaces of \mathbb{Z}_{n}^{m} ($n > m \geq 1$), and two vertices are adjacent if and only if their intersection is of dimension $m - 1$. We characterize the automorphisms of $G(n, m, p^s)$ as follows. Let $n \geq 2m \geq 4$ and let $\varphi \in \text{Aut}(G(n, m, p^s))$. Then either $\varphi(X) = XU$ for all $X \in V(G(n, m, p^s))$, or $n = 2m$ and $\varphi(X) = (XU)^\perp$ for all $X \in V(G(2m, m, p^s))$, where U is a fixed invertible matrix and $(XU)^\perp$ is the dual subspace of XU. This result also extends W.-L. Chow’s theorem for the geometry of Grassmann space [Ann. Math. (2) 50, 32-67 (1949; Zbl 0040.22901)].

MSC:
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
14M17 Homogeneous spaces and generalizations

Keywords:
Grassmann graph; residue class ring; Grassmann space; automorphism; maximum clique

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.