Leung, Ka Hin; Zhou, Yue
No lattice tiling of \mathbb{Z}^n by Lee sphere of radius 2. (English) Zbl 1433.05148

Summary: We prove the nonexistence of lattice tilings of \mathbb{Z}^n by Lee spheres of radius 2 for all dimensions $n \geq 3$. This implies that the Golomb-Welch conjecture [S. W. Golomb and L. R. Welch, SIAM J. Appl. Math. 18, 302–317 (1970; Zbl 0192.56302)] is true when the common radius of the Lee spheres equals 2 and $2n^2 + 2n + 1$ is a prime. As a direct consequence, we also answer an open question in the degree-diameter problem of graph theory: the order of any abelian Cayley graph of diameter 2 and degree larger than 5 cannot meet the abelian Cayley Moore bound.

MSC:
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
94B05 Linear codes (general theory)
05B45 Combinatorial aspects of tessellation and tiling problems

Keywords:
Golomb-Welch conjecture; lattice tiling; algebraic tiling; degree-diameter problem; perfect Lee code

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.