Guo, W.; Lytkina, D. V.; Mazurov, V. D.; Revin, D. O.

Integral Cayley graphs. (English. Russian original) Zbl 1434.05069
Algebra Logic 58, No. 4, 297-305 (2019); translation from Algebra Logika 58, No. 4, 445-457 (2019).

Summary: Let G be a group and $S \subseteq G$ a subset such that $S = S^{-1}$, where $S^{-1} = \{s^{-1} | s \in S\}$. Then a Cayley graph $\text{Cay}(G, S)$ is an undirected graph Γ with vertex set $V(\Gamma) = G$ and edge set $E(\Gamma) = \{(g, gs) | g \in G, s \in S\}$. For a normal subset S of a finite group G such that $s \in S \Rightarrow s^k \in S$ for every $k \in \mathbb{Z}$ which is coprime to the order of s, we prove that all eigenvalues of the adjacency matrix of $\text{Cay}(G, S)$ are integers. Using this fact, we give affirmative answers to Questions 19.50(a) and 19.50(b) in the [V. D. Mazurov (ed.) and E. I. Khukhro (ed.), The Kourovka notebook. Unsolved problems in group theory. 19th ed. Novosibirsk: Institute of Mathematics, Russian Academy of Sciences, Siberian Div. (2018)].

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)

05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)

Keywords:

Cayley graph; adjacency matrix of graph; spectrum of graph; integral graph; complex group algebra; character of group

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.