Kozachinskiy, Alexander

Recognizing read-once functions from depth-three formulas. (English) Zbl 1434.68201

Theory Comput. Syst. 64, No. 1, 3-16 (2020).

Summary: Consider the following decision problem: for a given monotone Boolean function \(f \) decide, whether \(f \) is read-once. For this problem, it is essential how the input function \(f \) is represented. K. Elbassioni et al. [J. Comb. Optim. 22, No. 3, 293–304 (2011; Zbl 1229.90090)] proved that this problem is coNP-complete when \(f \) is given by a depth-4 read-2 monotone Boolean formula. V. Gurvich [It is a coNP-complete problem to decide whether a positive \(\lor \land \) formula of depth 3 defines a read-once or respectively quadratic Boolean function. Techn. Rep. RRR 4-2010, Center for Operations Research, Rutgers University (2010)] proved that this problem is coNP-complete even when the input is the following expression: \(C \lor D_n \), where \(D_n = x_1 y_1 \lor \cdots \lor x_n y_n \) and \(C \) is a monotone CNF over the variables \(x_1, y_1, \ldots, x_n, y_n \) (note that this expression is a monotone Boolean formula of depth 3; in Gurvich, loc. cit. nothing is said about the readability of \(C \), but the proof is valid even if \(C \) is read-2 and thus the entire formula is read-3). We show that we can test in polynomial-time whether a given expression \(C \lor D \) computes a read-once function, provided that \(C \) is a read-once monotone CNF and \(D \) is a read-once monotone DNF and all the variables of \(C \) occur also in \(D \) (recall that due to Gurvich, the problem is coNP-complete when \(C \) is read-2). We also observe that from the so-called Sausage Lemma of E. Boros et al. [in: Polyhedral computation. Papers presented at a workshop, Montréal, Canada, 2006. Providence, RI: American Mathematical Society (AMS). 15–43 (2009; Zbl 1170.68619)] it follows that the problem of recognizing read-once functions is coNP-complete when the input formula is depth-3 read-2.

MSC:

68Q25 Analysis of algorithms and problem complexity
06E30 Boolean functions
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)

Keywords:
read-once functions; NP-completeness; monotone Boolean functions; depth-three formulas

Full Text: DOI arXiv

References:

[1] Boros, Endre; Elbassioni, Khaled; Gurvich, Vladimir; Makino, Kazuhisa, Generating vertices of polyhedra and related problems of monotone generation, Polyhedral Computation, 15-43 (2009), Providence, Rhode Island: American Mathematical Society, Providence, Rhode Island · Zbl 1170.68619
[7] Gurvich, V.: It is a cmp-complete problem to decide whether a positive \(\exists \exists \) formula of depth 3 defines a read-once or respectively quadratic boolean function. Rutcor Research Report (2010)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.