Additive functional equations and partial multipliers in C^*-algebras. (English) Zbl 1435.46038

Summary: In this paper, we solve the additive functional equations
\begin{align}
 f(x+y+z) - f(x+y) - f(z) &= s(f(x+y-z) + f(x-y+z) - 2f(x)) \quad (1) \\
 f(x+y-z) + f(x-y+z) - 2f(x) &= s(f(x+y+z) - f(x+y) - f(z)), \quad (2)
\end{align}
where s is a fixed nonzero complex number.

Furthermore, we prove the Hyers-Ulam stability of the additive functional equations (1) and (2) in complex Banach spaces. This is applied to investigate partial multipliers in Banach $*$-algebras, unital C^*-algebras, Lie C^*-algebras, JC^*-algebras and C^*-ternary algebras, associated with the additive functional equations (1) and (2).

MSC:
- 46L05 General theory of C^*-algebras
- 43A22 Homomorphisms and multipliers of function spaces on groups, semi-groups, etc.
- 39B52 Functional equations for functions with more general domains and/or ranges
- 39B62 Functional inequalities, including subadditivity, convexity, etc.

Keywords:
- partial multiplier; C^*-algebra; Hyers-Ulam stability; additive functional equation; C^*-ternary algebra; Lie C^*-algebra; JC^*-algebra

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.