Munro, J. Ian; Navarro, Gonzalo; Shah, Rahul; Thankachan, Sharma V.

Ranked document selection. (English) Zbl 1435.68078

Summary: Let \(\mathcal{D} \) be a collection of string documents of \(n \) characters in total. The top-\(k \) document retrieval problem is to preprocess \(\mathcal{D} \) into a data structure that, given a query \((P, k)\), can return the \(k \) documents of \(\mathcal{D} \) most relevant to pattern \(P \). The relevance of a document \(d \) for a pattern \(P \) is given by a predefined ranking function \(\omega(P, d) \). Linear space and optimal query time solutions already exist for this problem. In this paper we consider a novel problem, document selection, in which a query \((P, k)\) aims to report the \(k \)th document most relevant to \(P \) (instead of reporting all top-\(k \) documents). We present a data structure using \(O(n \log^* n) \) space, for any constant \(\epsilon > 0 \), answering selection queries in time \(O(\log k / \log \log n) \), and a linear-space data structure answering queries in time \(O(\log k) \), given the locus node of \(P \) in a (generalized) suffix tree of \(\mathcal{D} \). We also prove that it is unlikely that a succinct-space solution for this problem exists with poly-logarithmic query time, and that \(O(\log k / \log \log n) \) is indeed optimal within \(O(n \text{polylog } n) \) space for most text families. Finally, we present some additional space-time trade-offs exploring the extremes of those lower bounds.

MSC:

68P05 Data structures
68P20 Information storage and retrieval of data

Keywords:
document indexing; top-k document retrieval; succinct data structures

Full Text: DOI

References:
