The paper under review deals with the interplay of the moduli of curves and the moduli of $K3$ surfaces via the virtual class of the moduli spaces of stable maps. Using Getzler’s relation for $M_{1,4}$ [E. Getzler, J. Am. Math. Soc. 10, No. 4, 973–998 (1997; Zbl 0909.14002)], the authors construct a universal decomposition of the diagonal in Chow in the third fiber product of the universal $K3$ surface. This decomposition together with the Witten-Dijkgraaf-Verlinde-Verlinde relation in genus 0 is used to prove a conjecture of Marian-Oprea-Pandharipande [A. Marian et al., Ann. Sci. Éc. Norm. Supér. (4) 50, No. 1, 239–267 (2017; Zbl 1453.14016]): the full tautological ring of the moduli space of $K3$ surfaces is generated in Chow by the classes of the Noether-Lefschetz loci. Furthermore the authors propose a connection between relations in the tautological ring of the moduli spaces of curves and relations in the tautological ring of the moduli space of $K3$ surfaces.

Reviewer: Mauro Fortuna (Hannover)

MSC:

14J28 $K3$ surfaces and Enriques surfaces
14J10 Families, moduli, classification; algebraic theory
14C15 (Equivariant) Chow groups and rings; motives
14D07 Variation of Hodge structures (algebrao-geometric aspects)
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebrao-geometric aspects)

Keywords:

$K3$ surfaces; moduli spaces; tautological cycles; Noether-Lefschetz loci; Gromov-Witten theory

Full Text: DOI

References:

[9] Yau, S.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.