Ekici, Kivanc; Djeddi, Reza; Li, Hang; Frankel, Jay I.
Modeling periodic and non-periodic response of dynamical systems using an efficient Chebyshev-based time-spectral approach. (English) [Zbl 1437.76038]

Summary: A Chebyshev-based time-spectral method (C-TSM) is developed to model periodic and non-periodic nonlinear dynamical systems. It is shown that the proposed technique can accurately model such problems eliminating the need to use expensive classical dual-timestepping time-accurate integration. Furthermore, for autonomous dynamical systems subjected to single or multiple fundamental frequencies, the C-TSM analysis can be used without the prior knowledge of those frequencies. This offers an apparent advantage over the Fourier-based time-spectral methods. In addition, the current approach lends itself as a very useful tool for transient adjoint-based sensitivity analysis since it greatly reduces the memory requirements by solving and storing time-dependent response at a handful of collocation points instead of storing the entire time-history of the primal solution. The efficacy of the present technique is demonstrated by directly comparing the results with Fourier-based time-spectral, as well as time-accurate methods.

MSC:
76M22 Spectral methods applied to problems in fluid mechanics
76N06 Compressible Navier-Stokes equations
76D17 Viscous vortex flows
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C60 Qualitative investigation and simulation of ordinary differential equation models

Keywords:
unsteady flow; Chebyshev series; time-spectral method; harmonic balance; aperiodic flow; nonlinear dynamics

Software:
SU2

Full Text: DOI

References:
[12] Howison, J.; Ekici, K., Dynamic stall analysis using harmonic balance and correlation-based \(\gamma \cdot (\text{Re}_f) \cdot \theta \) transition models for wind turbine applications, Wind Energy, 18, 12, 2047-2063 (2015)

[42] Huang, H.; Ekici, K., Stabilization of high-dimensional harmonic balance solvers using time spectral viscosity, AIAA J., 52, 8, 1784-1794 (2014)

Thomas, J.; Custer, C.; Dowell, E.; Hall, K., Unsteady flow computation using a harmonic balance approach implemented about the OVERFLOW 2 flow solver, (AIAA Paper 2009-4270 (2009))

Campobasso, M. S.; Baba-Ahmadi, M. H., Analysis of unsteady flows past horizontal axis wind turbine airfoils based on harmonic balance compressible Navier-Stokes equations with low-speed preconditioning, J. Turbomach., 134, 6 (2012)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.