Zhou, Jianping; Wang, Yang; Zheng, Xiao; Wang, Zhen; Shen, Hao

Weighted H_{∞} consensus design for stochastic multi-agent systems subject to external disturbances and ADT switching topologies. (English) Zbl 1437.93126 Nonlinear Dyn. 96, No. 2, 853-868 (2019).

Summary: This paper is devoted to weighted H_{∞} consensus design for continuous-time/discrete-time stochastic multi-agent systems with average dwell time (ADT) switching topologies and external disturbances via output feedback. By introducing a linear transformation, the closed-loop systems are changed into reduced-order systems and, at the same time, the issue of weighted H_{∞} consensus design is transformed into a weighted H_{∞} control problem. Then, Lyapunov conditions are established for the mean-square asymptotic stability and weighted H_{∞} disturbance attenuation of the reduced-order systems. Based on them, two sufficient conditions are derived for the existence of desired output-feedback control protocols through the feasible solution of a series of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed results.

MSC:
93D50 Consensus
93A16 Multi-agent systems

Keywords:
average Dwell time; stochastic disturbance; output-feedback control; consensus; multi-agent system

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.