Wu, Bing-Ling; Chen, Yong-Gao
On the denominators of harmonic numbers. (Sur les dénominateurs des nombres harmoniques.) (English. French summary) Zbl 1439.11078

For a positive integer \(n \), write the \(n \)-th harmonic number \(H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \) as \(\frac{u_n}{v_n} \) with relatively prime positive integers \(u_n \) and \(v_n \). For a prime number \(p \), define the sets \(J_p = \{ n : p \mid u_n \} \) and \(I_p = \{ n : p \nmid v_n \} \).

It is clear that \(J_p \subseteq I_p \). A. Eswarathasan and E. Levine [Discrete Math. 91, No. 3, 249–257 (1991; Zbl 0764.11018)] conjectured that for every prime number \(p \), \(J_p \) is finite. D. W. Boyd [Exp. Math. 3, No. 4, 287–302 (1994; Zbl 0838.11015)] verified this conjecture up to 547, with three exceptions: \(p = 83, 127, 397 \).

The main result of the paper supports the conjecture: for every positive integer \(m \), the set \(\{ n : m \mid v_n \} \) has density one.

Reviewer: László A. Székely (Columbia)

MSC:
11B75 Other combinatorial number theory
11B05 Density, gaps, topology
11B83 Special sequences and polynomials

Keywords:
harmonic numbers; density one; denominator

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.