Summary: In the origins of complexity theory K. S. Booth and G. S. Lueker [in: Proceedings of the seventh annual ACM symposium on theory of computing, Albuquerque, NM, 1975. New York, NY: Association for Computing Machinery (ACM) 255–265 (1975; Zbl 0436.05058)] showed that the question of whether two graphs are isomorphic or not can be reduced to the special case of chordal graphs. To prove that, they defined a transformation from graphs G to chordal graphs $BL(G)$. The projective resolutions of the associated edge ideals $I_{BL(G)}$ are manageable and we investigate to what extent their Betti tables also tell non-isomorphic graphs apart. It turns out that the coefficients describing the decompositions of Betti tables into pure diagrams in Boij-Söderberg theory are much more explicit than the Betti tables themselves, and they are expressed in terms of classical statistics of the graph G.

MSC:
- 05E40 Combinatorial aspects of commutative algebra
- 13D02 Syzygies, resolutions, complexes and commutative rings
- 05C07 Vertex degrees
- 05C60 Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)

Keywords:
- linear resolutions;
- graded Betti numbers;
- edge ideals;
- graph isomorphism

Software:
- BoijSoederberg

References:
[1] Babai, László

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.