Lascu, D.; Sebe, G. I.
A dependence with complete connections approach to generalized Rényi continued fractions.
(English) Zbl 1440.11126

The authors study continued fractions associated with the one parameter family of interval maps of the form
\[T_u(x) = \frac{1}{u(1-x)} - \left\lfloor \frac{1}{u(1-x)} \right\rfloor, \]
where \(u > 0, x \in [0,1) \), \(\lfloor \cdot \rfloor \) denotes the floor function, for the values \(u = 1/N, N \geq 2 \) an integer. They refer to this continued fraction as Rényi-type continued fraction and \(T_{1/N} \) is indicated by \(R_N \).

The transformation \(T_u \) was addressed by K. Gröchenig and A. Haas [Ergodic Theory Dyn. Syst. 16, No. 6, 1241–1274 (1996; Zbl 0884.58040)]. These, and general related transformatins, have been looked into with regard to dynamical properties and lead to a wide range of connections between continued fractions, diophantine approximation, ergodic theory and hyperbolic geometry, cf. the Introduction section in the paper under review.

The Rényi-type continued fraction transformation \(R_N[0,1] \rightarrow [0,1] \) is defined by
\[R_N(x) = \begin{cases} \frac{1}{u(1-x)} - \left\lfloor \frac{1}{u(1-x)} \right\rfloor, & x \in [0,1), \\ 0, & x = 1, \end{cases} \]
and the associated continued fraction is given by
\[x = 1 - \frac{N}{1 + a_1} - \frac{N}{1 + a_2} - \frac{N}{1 + a_3} - \cdots = [a_1, a_2, a_3, \cdots]_{R}, \]
where the digits \(a_n(x), n \in \mathbb{N}_+ \) are defined as
\[\begin{cases} a_n = a_n(x) = a_1 \left(R_N^{n-1}(x) \right), & n \geq 1 \ (R_N^0(x) = x) \\ a_1 = a_1(x) = \begin{cases} \frac{N}{1-x} & \text{if } x \neq 1, \\ \infty & \text{if } x = 1. \end{cases} \end{cases} \]

This continued fraction can be seen as a measure preserving dynamical system \(([0,1], \mathcal{B}_{[0,1]}, R_N, \rho_N) \) with \(\mathcal{B}_{[0,1]} \) the \(\sigma \)-algebra of Borel subsets of \([0,1]\) and
\[\rho_N(A) = \frac{1}{\log \left(\frac{N}{N-1} \right)} \int_A \frac{dx}{x + N-1}, \quad A \in \mathcal{B}_{[0,1]} \]
is the invariant probability measure under \(R_N \).

The layout of the paper is as follows:
§1. Introduction (2 pages)
§2. Rényi-type continued fraction expansions as dynamical system (2 pages)
§3. The probabilistic structure of \(\{a_n\}_{n \in \mathbb{N}_+} \) under the Lebesgue measure (2 pages)
Results are Proposition 3.1 (Brodén-Borel-Lévy-type formula) and Proposition 3.2 (the probabilistic structure of the digits \(a_n \) under the lebesgue measure on \([0,1]\)).
§4. Natural extension and extended random variables (3 pages)
Main result Theorem 4.3 (featuring the natural extension \(\overline{R}_N \) and \(\overline{\rho}_N \) to \([0,1]^2 \) with the Borel sets on the unit square).
§5. Perron-Frobenius operators (2 pages)
Defined through the Radon-nikodym theorem as the unique linear and positive operator on the Banach space $L^1([0,1]), \mu$ for a specific probability measure μ.

§6. Random systems with complete connections and the Gauss-Kuzmin-type problem (8 pages)
This type of system is often called an iterated function system; main results in Theorem 6.6 (associated Markov chain being a Doeblin-Fortet operator), Theorem 6.7 (an a compact Markov chain being ordered and the existence of a special transition probability function), Theorem 6.16 (a Gauss-Kuzmin-type theorem for R_N).

References (contains 23 items)

Reviewer: Marcel G. de Bruin (Heemstede)

MSC:
11J70 Continued fractions and generalizations
28D05 Measure-preserving transformations
37A30 Ergodic theorems, spectral theory, Markov operators
60A10 Probabilistic measure theory

Keywords:
Rényi continued fraction; Perron-Frobenius operator; random system with complete connections; Gauss-Kuzmin problem

Full Text: DOI arXiv

References:
[9] Iosifescu, M.; Grigorescu, S., Dependence With Complete Connections and its Applications (2009), Press (Cambridge: Cambridge Univ. Press · Zbl 1154.60069

© 2022 FIZ Karlsruhe GmbH
[18] Ryll-Nardzewski, C., On the ergodic theorems (II) (Ergodic theory of continued fractions), Studia Mathematica, 12, 1, 74-79 (1951) · Zbl 0044.12401 · doi:10.4064/sm-12-1-74-79
[21] G. I. Sebe and D. Lascu, Convergence rate for Rényi-type continued fraction expansions, submitted · Zbl 1458.11124

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.