Summary: We consider the problem of augmenting a graph with n vertices embedded in a metric space, by inserting one additional edge in order to minimize the diameter of the resulting graph. We present an algorithm for the cases when the input graph is a path that runs in $O(n \log^* n)$ time. We also present an algorithm that computes a $(1 + \varepsilon)$-approximation in $O(n + 1/\varepsilon^2)$ time for paths in \mathbb{R}^d, where d is a constant.

For the entire collection see [Zbl 1316.68014].

MSC:

- 68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
- 68R10 Graph theory (including graph drawing) in computer science
- 68W40 Analysis of algorithms

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.