Antunez, Andrea C.
Sphere and projective space of a C^*-algebra with a faithful state. (English) [Zbl 1441.46046] Demonstr. Math. 52, 410-427 (2019).

Summary: Let A be a unital C^*-algebra with a faithful state φ. We study the geometry of the unit sphere $S_\varphi = \{ x \in A : \varphi(x^*x) = 1 \}$ and the projective space $P_\varphi = S_\varphi / T$. These spaces are shown to be smooth manifolds and homogeneous spaces of the group $U_\varphi(A)$ of isomorphisms acting in A which preserve the inner product induced by φ, which is a smooth Banach-Lie group. An important role is played by the theory of operators in Banach spaces with two norms, as developed by M. G. Krein [Integral Equations Oper. Theory 30, No. 2, 140–162 (1998; Zbl 0914.47002)] and P. D. Lax [Commun. Pure Appl. Math. 7, 633–647 (1954; Zbl 0057.34402)]. We define a metric in P_φ, and prove the existence of minimal geodesics, both with given initial data, and given endpoints.

MSC:
46L30 States of selfadjoint operator algebras
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds

Keywords:
homogeneous space; minimal curves; C^*-algebra; projective space

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.