Algebraic varieties equipped with a reductive group action are considered. The goal is to generalize the Białynicki-Birula decomposition for torus action [A. Białynicki-Birula, Ann. Math. (2) 98, 480–497 (1973; Zbl 0275.14007)] to general situations, when a linearly reductive group acts. The paper deals with fundamental questions, it is clearly, very well written.

The original Białynicki-Birula theorem for $G = \mathbb{G}_m$ (the one dimensional torus) states that any smooth and complete algebraic G-variety X can be decomposed into cells X^+_i indexed by the components of X^G. Let X^+ be the disjoint union of the cells. The resulting natural maps

$$i_X : X^+ \to X \quad \text{the sum of inclusions}$$
$$\pi_X : X^+ \to X^G \quad \text{the limit map } \lim_{t \to 0} tx$$

are G-equivariant and π_X is a locally trivial affine fibration. Moreover the action of G on X^+ extends to an action of $\overline{G} = \mathbb{A}^1$. When we drop the assumption on X being smooth and complete, then the map i_X does not have to be a bijection on the closed points and π_X is not necessarily a fibration. In the general setting for $G = \mathbb{G}_m$ the functoriality of X^+ was observed by V. Drinfeld [“On algebraic spaces with an action of G_m”, Preprint, arXiv:1308.2604].

The paper under review generalizes the situation to the following interesting and natural setting. Suppose G is a connected linearly reductive affine group. Let \overline{G} be a monoid containing G as a dense set. The basic example is an affine toric variety or the monoid of $n \times n$ matrices containing GL_n. With a mild assumption on X (locally of finite type) the scheme X^+ together with the map i_X is defined. The scheme X^+ represents the functor $D_{X,\overline{G}} : \text{Sch}_k^{op} \to \text{Set}$

$$D_{X,\overline{G}}(S) = \{ \varphi : \overline{G} \times X \to X \mid \varphi \text{ is } G\text{-equivariant} \}.$$

If the monoid \overline{G} contains a zero and X is smooth then the limit map $\pi_X : X^+ \to X^G$ exists and it is an affine fibre bundle. The result is extended to algebraic spaces. The functoriality of X^+ is proven.

The proof is based on the results of J. Alper et al. [Ann. Math. (2) 191, No. 3, 675–738 (2020; Zbl 1461.14017)] which says that in étale topology and over an algebraically closed field every fixed point has an affine G-invariant neighbourhood. The result in the affine situation is obtained by looking at the formal neighbourhood of X^G.

Reviewer: Andrzej Weber (Warszawa)

[19] Iarrobino, A., An algebraic fibre bundle over \((\mathbb{P}_1)\) that is not a vector bundle, Topology, 12, 229-232 (1973) · Zbl 1064.14500

[29] Richarz, Timo, Spaces with \((\mathbb{G}_m)\)-action, hyperbolic localization and nearby cycles (2018) · Zbl 1444.14085

[31] Romagny, Matthieu, Group actions on stacks and hyperbolic localization and nearby cycles (2005) · Zbl 1100.14001

[32] (2017), Stacks Project

[34] Špenko, Špela; Van den Bergh, Michel, Semi-orthogonal decompositions of GIT quotient stacks (2018)

