Menini, Laura; Possieri, Corrado; Tornambè, Antonio

Summary: In this paper, a symbolic, algorithmic procedure to compute an immersion that recasts a polynomial system into a linear one up to an output injection is proposed. Such a technique is based on computing, through algebraic geometry methods, the set of all the embeddings of the system and on matching the coefficients of these polynomials with the ones of the embeddings of a linear system up to an output injection. The given algorithm is then relaxed to compute an immersion that recasts a polynomial system into a form that is linear up to a finite order and an output injection and to compute an approximation of the immersion.

MSC:
93C10 Nonlinear systems in control theory
13P05 Polynomials, factorization in commutative rings
68W30 Symbolic computation and algebraic computation
93B07 Observability
93B18 Linearizations

Keywords:
observer design; linear systems up to an output injection; embeddings; algebraic geometry

Software:
Mathematica; PHCpack; NumericSolutions; ISOLATE; Macaulay2

Full Text: DOI

References:
[14] Grayson, D. R.; Stillman, M. E., Macaulay2, a software system for research in algebraic geometry (2018), Available at
[17] Khalil, H. K.; Praly, L., High-gain observers in nonlinear feedback control, Int. J. Robust Nonlinear Control, 24, 6, 993-1015

Krener, A. J.; Respondek, W., Nonlinear observers with linearizable error dynamics, SIAM J. Control Optim., 23, 2, 197-216 (1985) - Zbl 0569.93035

Menini, L.; Tornambe, A., On the use of algebraic geometry for the design of high-gain observers for continuous-time polynomial systems, (IFAC World Congr, vol. 19 (2014)), 43-48

Menini, L.; Possieri, C.; Tornambe, A., On observer design for a class of continuous-time affine switched or switching systems, (53rd IEEE Conf. Decision Control (2014)), 6234-6239

Menini, L.; Possieri, C.; Tornambe, A., NumericSolutions, a package to solve systems of polynomial equalities (2018), Available at

Rudin, W., Real and Complex Analysis (1987), McGraw-Hill - Zbl 0925.00005

