Kihara, Hiroshi
Matric generators of coalgebras and bialgebras. (English)
J. Algebra Appl. 18, No. 8, Article ID 1950144, 6 p. (2019).

M. Takeuchi asserted that if a bialgebra H over a field k is finitely generated as a k-algebra, then H is a matric bialgebra in [Isr. J. Math. 72, No. 1–2, 232–251 (1990; Zbl 0723.17013)].

The author introduces the notion of a matric coalgebra over a commutative ring k, and shows that if C is faithfully projective as a k-module, then C is a matric coalgebra. Using this, the author also shows that if a bialgebra H over a semihereditary ring k is projective as a k-module, then any finite subset of H is contained in some matric subbialgebra. This result is a generalization of Takeuchi’s assertion and can be regarded as a local finiteness theorem on bialgebras.

Reviewer: Shuangjian Guo (Guiyang)

MSC:

16T15 Coalgebras and comodules; corings
16T10 Bialgebras
16E60 Semihereditary and hereditary rings, free ideal rings, Sylvester rings, etc.

Keywords:

matric coalgebra; matric bialgebra; semihereditary ring; local finiteness

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.