Koberda, Thomas; Lodha, Yash

2-chains and square roots of Thompson’s group F. (English) Zbl 1448.57029

The Thompson group F is a remarkable finitely presented and 2-generated group which was introduced by R. Thompson in the 1960’s. A subgroup $\langle f, g \rangle \leq \text{Homeo}^+(I)$ is called a square root of F if (f^2, g^2) is isomorphic to F. In this paper the authors investigate this notion and show that there are square roots of F enjoying surprising properties. For instance, the Thompson group F does not contain the free group F_2 (and, in particular, it is not known whether F is amenable or not). However, there is a square root containing F_2. Another interesting fact is that while the Thompson group admits a faithful action by C^∞-diffeomorphisms of the circle, there are square roots that do not admit a faithful action by C^2-diffeomorphisms on compact 1-manifolds or on the real line. Moreover, the authors prove that there exist uncountably many square roots of F and, in particular, there are square roots that do not admit a finite presentation. In this way, the authors provide answers to several questions posed by Brin. Finally the square roots of other subgroups are examined, like \mathbb{Z} and the lamplighter group $\mathbb{Z} \wr \mathbb{Z}$.

Reviewer: Valeriano Aiello (Genève)

MSC:

57M60 Group actions on manifolds and cell complexes in low dimensions
37E05 Dynamical systems involving maps of the interval
57Q99 PL-topology
57S25 Groups acting on specific manifolds
20F60 Ordered groups (group-theoretic aspects)
20F14 Derived series, central series, and generalizations for groups

Keywords: Thompson’s group; orderable group; equations over homeomorphism groups; smoothable group actions

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.