Hutchcroft, Tom
Self-avoiding walk on nonunimodular transitive graphs. (English) Zbl 1448.60187

Summary: We study self-avoiding walk on graphs whose automorphism group has a transitive nonunimodular subgroup. We prove that self-avoiding walk is ballistic, that the bubble diagram converges at criticality, and that the number of self-avoiding walks of length \(n \) is comparable to the \(n \)th power of the connective constant. We also prove that the same results hold for a large class of repulsive walk models with a self-intersection based interaction, including the weakly self-avoiding walk. All of these results apply in particular to the product \(T_k \times \mathbb{Z}^d \) of a \(k \)-regular tree \((k \geq 3)\) with \(\mathbb{Z}^d \), for which these results were previously only known for large \(k \).

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
60G50 Sums of independent random variables; random walks
05C30 Enumeration in graph theory
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics

Keywords:
self-avoiding walk; nonunimodular; transitive graph; mean-field; nonamenable; bubble diagram

Full Text: DOI arXiv Euclid

References:

[34] Nienhuis, B. (1982). Exact critical point and critical exponents of \(\langle \sum_{p \subset \mathbb{Z}} \langle \text{vertex} \rangle \rangle(n) \rangle \) in two dimensions. Phys. Rev. Lett. 49 1062-1065.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.