Matsushita, H.; Kurokawa, H.; Kousaka, T.

Saddle-node bifurcation parameter detection strategy with nested-layer particle swarm optimization. (English) Zbl 1448.65270

Chaos Solitons Fractals 119, 126-134 (2019).

Summary: Nested-layer particle swarm optimization (NLPSO) detects bifurcation parameters in discrete-time dynamical systems. Previous studies have proven the effectiveness of NLPSO for period-doubling bifurcations, but not for other bifurcation phenomena. This paper demonstrates that NLPSO can effectively detect saddle-node bifurcations. Problems in detecting saddle-node bifurcation parameters by conventional NLPSO are clarified, and are solved by imposing a simple condition on the NLPSO objective function. Under this conditional objective function, the NLPSO accurately detected both saddle-node and period-doubling bifurcation parameters regardless of their stability, without requiring careful initialization, exact calculations or Lyapunov exponents.

MSC:

- 65P30 Numerical bifurcation problems
- 65K10 Numerical optimization and variational techniques
- 37M20 Computational methods for bifurcation problems in dynamical systems
- 37G10 Bifurcations of singular points in dynamical systems

Keywords:

- bifurcation point detection; bifurcation analysis; initial value setup problem; discrete-time dynamical systems; particle swarm optimization (PSO)

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.