Kucche, Kishor D.; Mali, Ashwini D.
Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative. (English) Zbl 1449.34022

Summary: We present the quasilinearization method with initial time difference for nonlinear fractional differential equations (FDEs) involving generalized Hilfer fractional derivative under various conditions on the nonlinear function involved in the right hand side of the equation. An essential comparison result concerning lower and upper solutions is obtained for this generalized FDEs without demanding the Hölder continuity assumption.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
34A45 Theoretical approximation of solutions to ordinary differential equations

Keywords:
generalized Hilfer fractional derivative; quasilinearization method; initial time difference; comparison theorems

Full Text: DOI

References:

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2021 FIZ Karlsruhe GmbH
[27] Liu, Z.; Wang, R.; Zhao, J., Quasilinearization for fractional differential equations of Riemann-Liouville type, Miskolc Math-...
[31] Qassim, MD; Furati, KM; Tatar, N-E, On a differential equation involving Hilfer-Hadamlard fractional derivative, Abstract Appl Anal, 391062, 17 (2012) · Zbl 1255.34007 · doi:10.1155/2012/391062
[34] Sousa, JVC; Capelas de Oliveira, E., Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl Math Lett, 81, 50-56 (2018) · Zbl 06860197
[38] Sousa, JVC; Kucche, KD; Capelas de Oliveira, E., On the Ulam-Hyers stabilities of the solutions of ψ-Hilfer fractional differential equation with abstract Volterra operator, Math Methods Appl Sci, 42, 3021-3032 (2019) · Zbl 1423.34059

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.