Nakamura, Yusuke; Tanaka, Hiromu
A Witt Nadel vanishing theorem for threefolds. (English) Zbl 1451.14124

The authors of the paper under review work over a perfect field k of characteristic $p > 5$. A log-pair (X, Δ), where X is normal and Δ is an \mathbb{R}-divisor, has klt singularities if for any birational morphism $\pi: Y \to X$ with Y normal, one has $K_Y \sim \pi^*(K_X + \Delta) + \sum_i a_i E_i$, with $a_i > -1$ for all i. The non-klt locus of a log-pair (X, Δ) is the (reduced) subscheme $N_{\text{klt}}(X, \Delta)$ consisting of not-klt points. For any k-scheme X, let $I \subseteq O_X$ be a coherent ideal sheaf on X; one defines the associated sheaf WI of Witt vectors as $WI(U) := W(I(U))$.

The main result of the paper under review, Theorem 4.10, is a characteristic-p version of a vanishing theorem, in the spirit of the work by H. Esnault in [Invent. Math. 151, No. 1, 187–191 (2003; Zbl 1092.14010)]: more precisely, let (X, Δ) be a three-dimensional log-pair, $f: X \to Z$ a projective morphism to a quasi-projective scheme and suppose that $-(K_X + \Delta)$ is f-nef and f-big, then $R^i f_*(WI_{N_{\text{klt}}(X, \Delta), \mathbb{Q}}) = 0$ holds for all $i > 0$, where $I_{N_{\text{klt}}(X, \Delta), \mathbb{Q}}$ is the coherent ideal sheaf corresponding to $N_{\text{klt}}(X, \Delta)$. The strategy to prove this result consists in generalising the techniques by Y. Gongyo and the authors of the paper under review in [J. Eur. Math. Soc. (JEMS) 21, No. 12, 3759–3795 (2019; Zbl 1462.14045)] to reduce the statement to a $W\mathcal{O}$-vanishing for log Fano contractions (cf. Theorem 3.11).

As a consequence of the main result of the paper under review, the authors obtain several other results, such as the Kollár-Shokurov connectedness theorem (cf. Theorem 4.12), which generalises the work by C. Birkar in [Ann. Sci. Éc. Norm. Supér. (4) 49, No. 1, 169–212 (2016; Zbl 1346.14040)]. Another consequence is Corollary 5.2: suppose that k is finite, then for a non-klt projective normal Fano threefold the number of rational points on the klt-locus is divisible by the cardinality of k.

Reviewer: Andrea Fanelli (Versailles)

MSC:

14J45 Fano varieties
14E30 Minimal model program (Mori theory, extremal rays)
14F17 Vanishing theorems in algebraic geometry

Keywords:
rational points; Witt vectors; Nadel vanishing theorem

Full Text: DOI arXiv

References:

[8] Hacon, C. D. and Xu, C., On the three dimensional minimal model program in positive characteristic, J. Amer. Math. Soc.28
(2015), 711-744. - Zbl 1326.14032

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.