Hart, Ian; Zhang, Ping

Summary: For a positive integer \(k \), let \([k] = \{1, 2, \ldots, k\} \) and let \(\mathcal{P}([k]) \) denote the power set of the set \([k]\) and \(\mathcal{P}^t([k]) = \mathcal{P}([k]) - \emptyset \). For each integer \(t \) with \(1 \leq t < k \), let \(\mathcal{P}_t([k]) \) denote the set of \(t \)-element subsets of \(\mathcal{P}([k]) \). For an edge coloring \(c : E(G) \to \mathcal{P}([k]) \) of a graph \(G \), where adjacent edges may be colored the same, \(c' : V(G) \to \mathcal{P}^t([k]) \) is the vertex coloring in which \(c'(v) \) is the union of the color sets of the edges incident with \(v \). If \(c' \) is a proper vertex coloring of \(G \), then \(c \) is a majestic \(t \)-tone \(k \)-coloring of \(G \). For a fixed positive integer \(t \), the minimum positive integer \(k \) for which a graph \(G \) has a majestic \(t \)-tone \(k \)-coloring is the majestic \(t \)-tone index \(\text{maj}_t(G) \) of \(G \). It is known that if \(G \) is a connected bipartite graph of order at least 3, then \(\text{maj}_t(G) = t + 1 \) or \(\text{maj}_t(G) = t + 2 \) for each positive integer \(t \). It is shown that (i) if \(G \) is a 2-connected bipartite graph of arbitrarily large order \(n \) whose longest cycles have length \(\ell \), where \(n - 5 \leq \ell \leq n \) and \(t \geq 2 \) is an integer, then \(\text{maj}_t(G) = t + 1 \) and (ii) there is a 2-connected bipartite graph \(F \) of arbitrarily large order \(n \) whose longest cycles have length \(n - 6 \) and \(\text{maj}_2(F) = 4 \). Furthermore, it is shown for integers \(k, t \geq 2 \) that there exists a \(k \)-connected bipartite graph \(G \) such that \(\text{maj}_t(G) = t + 2 \). Other results and open questions are also presented.

MSC:
05C15 Coloring of graphs and hypergraphs
05C38 Paths and cycles
05C75 Structural characterization of families of graphs

Keywords:
majestic \(t \)-tone coloring; majestic \(t \)-tone index; bipartite graphs