Summary: We explore the local dynamics, N-S bifurcation, and hybrid control in a discrete-time Lotka-Volterra predator-prey model in \mathbb{R}_2^+. It is shown that \forall parametric values, model has two boundary equilibria: $P_{00}(0, 0)$ and $P_{20}(1, 0)$, and a unique positive equilibrium point: $P_{xy}^+ \left(\frac{d}{c}, \frac{r(c-d)}{bc} \right)$ if $c > d$. We explored the local dynamics along with different topological classifications about equilibria: $P_{00}(0, 0)$, $P_{20}(1, 0)$, and $P_{xy}^+ \left(\frac{d}{c}, \frac{r(c-d)}{bc} \right)$ of the model. It is proved that model cannot undergo any bifurcation about $P_{00}(0, 0)$ and $P_{20}(1, 0)$ but it undergoes an N-S bifurcation when parameters vary in a small neighborhood of $P_{xy}^+ \left(\frac{d}{c}, \frac{r(c-d)}{bc} \right)$ by using a center manifold theorem and bifurcation theory and meanwhile, invariant close curves appears. The appearance of these curves implies that there exist a periodic or quasiperiodic oscillations between predator and prey populations. Further, theoretical results are verified numerically. Finally, the hybrid control strategy is applied to control N-S bifurcation in the discrete-time model.

MSC:

37N35 Dynamical systems in control
37N25 Dynamical systems in biology
39A30 Stability theory for difference equations
39A28 Bifurcation theory for difference equations
39A50 Stochastic difference equations
92D25 Population dynamics (general)

Keywords:
bifurcation; hybrid control; Lotka-Volterra model; stability

Full Text: DOI