The Cremona group \(\text{Cr}_2(k) \) is the group of birational transformations of the projective plane \(\mathbb{P}^2 \) over a field \(k \). It was a long-standing question whether \(\text{Cr}_2(\mathbb{C}) \) is simple group. Several years ago S. Cantat et al. made a breakthrough in [Acta Math. 210, No. 1, 31–94 (2013; Zbl 1278.14017)] by proving that \(\text{Cr}_2(\mathbb{C}) \) is not simple. A. Lonjou generalized the result to an arbitrary field in [Ann. Inst. Fourier 66, No. 5, 2021–2046 (2016; Zbl 1365.14017)]. Over the field of complex numbers it was classically known that \(\text{Cr}_2(k) \) does not admit any non trivial homomorphism to an abelian group. Over the field of real numbers S. Zimmermann proved in [Duke Math. J. 167, No. 2, 211–267 (2018; Zbl 1402.14015)] that the abelianization of \(\text{Cr}_2(\mathbb{R}) \) is a direct sum of uncountably many \(\mathbb{Z}/2\mathbb{Z} \).

The article under review deals with an arbitrary perfect field with at least one Galois extension of degree eight. The authors constructed a tree on which \(\text{Cr}_2(k) \) acts so that \(\text{Cr}_2(k) \) can be written as an amalgam product by Bass-Serre theory. Note that each factor in the amalgam product is a big group and there are a lot of factors (same cardinality as the field \(k \)). Consequently the authors constructed a homomorphism from \(\text{Cr}_2(k) \) to a free product of \(\mathbb{Z}/2\mathbb{Z} \), thus also a homomorphism from \(\text{Cr}_2(k) \) to a direct sum of \(\mathbb{Z}/2\mathbb{Z} \).

The tree mentioned above comes from a square complex constructed in this paper on which \(\text{Cr}_2(k) \) acts. The vertices of the square are rank 1 fibrations with 1, 2, 3; rank 2 fibrations are generalizations of Mori fiber spaces. Roughly speaking the edges and the faces of the square complex record Sarkisov links and relations among Sarkisov links. If we blow up a general point of degree eight on \(\mathbb{P}^2 \) then we obtain a del Pezzo surface of degree 1. Such a del Pezzo surface gives a rank 2 fibration and an element in \(\text{Cr}_2(k) \) called a Bertini involution. This is where the hypothesis on the field \(k \) is used. Roughly speaking the tree is constructed by recording the action of \(\text{Cr}_2(k) \) on the part of the square complex containing these Bertini involutions.

Reviewer: Shengyuan Zhao (Stony Brook)

MSC:

14E07 Birational automorphisms, Cremona group and generalizations
14E30 Minimal model program (Mori theory, extremal rays)

Keywords:

Cremona group; Sarkisov program; amalgam product

Full Text: DOI

References:

Zimmermann, S.

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.