Belletti, Giulio
The maximum volume of hyperbolic polyhedra. (English)

With \mathbb{H}^3 the unit ball of \mathbb{R}^3, a projective polyhedron $P \subseteq \mathbb{R}^3 \subseteq \mathbb{RP}^3$ is a generalized hyperbolic polyhedron if each edge of P intersects \mathbb{H}^3. A projective polyhedron Γ is a rectification of a 3-connected planar graph Γ if the 1-skeleton of Γ is equal to Γ and all the edges of Γ are tangent to $\partial \mathbb{H}^3$ (which is S^2). Although Γ is not a generalized hyperbolic polyhedron, it is still possible to provide a definition for the volume of Γ as for any proper polyhedron.

The paper’s main result states:

For any 3-connected planar graph Γ, $\sup_P \text{Vol}(P) = \text{Vol}(\Gamma)$, where P varies among all proper generalized hyperbolic polyhedra with 1-skeleton Γ and Γ is the rectification of Γ.

“The theorem is proved by applying a sort of volume-increasing flow to any hyperbolic polyhedron.”

Reviewer: Victor V. Pambuccian (Glendale)

MSC:

52B10 Three-dimensional polytopes
51M25 Length, area and volume in real or complex geometry

Keywords:

volume; hyperbolic polyhedra

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.