Külshammer, Burkhard
Centers and radicals of group algebras and blocks. (English) Zbl 1457.20004
Arch. Math. 114, No. 6, 619-629 (2020).

Let B be a block of positive defect in the group algebra FG of a finite group G over an algebraically closed field F of prime characteristic p. Let $Z(B)$ (resp. $J(B)$) denote the center (resp. the Jacobson radical) of B. The author considers the following three related conditions:

(P_1) $J(B) \subseteq Z(B)$;

(P_2) $J(B)$ is commutative; and

(P_3) $J(Z(B))$ is an ideal of B.

Let \overline{G} denote the quotient group $G/O_p(G)$.

The author shows that B satisfies (P_3) if and only if B has a one-dimensional module and one of the following conditions holds: (i) \overline{G} is an abelian p-group; or (ii) $p = 2$, \overline{G} is a 2-group and $|Z(\overline{G})| = |\overline{G}| = 2$; or (iii) $\overline{G} \cong AGL(1, p^n)$ for some $n \in \mathbb{N}$. The author also shows that if the defect groups of B have order bigger than 2, then B satisfies (P_2) if and only if B has a one-dimensional module and \overline{G} is an abelian p-group. Finally, he shows that B satisfies (P_1) if and only if B has a one-dimensional module and \overline{G} is an abelian p-group.

Reviewer: Frauke Bleher (Iowa City)

MSC:

20C05 Group rings of finite groups and their modules (group-theoretic aspects)
20C20 Modular representations and characters

Keywords:
group algebra; block; center; radical

Full Text: DOI

References:
[6] Isaacs, IM; Smith, SD, A note on groups of (p^n)-length 1, J. Algebra, 38, 531-535 (1976) · Zbl 0334.20007 · doi:10.1016/0021-8693(76)90236-2

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.