This article studies polynomial parametrisations of knots and in particular the polynomial degrees that are in some sense minimal for a given knot type.

Every knot K admits a polynomial parametrisation, i.e. there is a polynomial map $\gamma : \mathbb{R} \to \mathbb{R}^3$ whose image closes to K in S^3 by adding the point at infinity. To every such parametrisation we can associate a triple of numbers, namely the polynomial degrees of the parametrisation of the x-, y- and z-coordinate, respectively. The lexicographic degree of a knot K is defined as the triple that is minimal among all polynomial parametrisations of K with respect to the lexicographic order.

The authors use techniques from the study of plane curves and pseudoholomorphic curves to compute the lexicographic degrees of all 2-bridge knots with minimal crossing number at most 11 and find that for these knots the lexicographic degree always takes the form $(3, b, 3N - b)$ for some value b.

Reviewer: Benjamin Bode (Osaka)

MSC:

57K10 Knot theory
14H50 Plane and space curves
20F36 Braid groups; Artin groups
14P25 Topology of real algebraic varieties
11A55 Continued fractions

Keywords:
real pseudoholomorphic curves; polynomial knots; two-bridge knots; Chebyshev curves

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.