Bychkov, B.; Dunin-Barkowski, P.; Shadrin, S.
Combinatorics of Bousquet-Mélou-Schaeffer numbers in the light of topological recursion.
(English) Zbl 1458.05262

Summary: In this paper we prove, in a purely combinatorial-algebraic way, a structural quasi-polynomiality property for the Bousquet-Mélou-Schaeffer numbers. Conjecturally, this property should follow from the Chekhov-Eynard-Orantin topological recursion for these numbers (or, to be more precise, the Bouchard-Eynard version of the topological recursion for higher order critical points), which we derive in this paper from the recent result of A. Alexandrov et al. [Commun. Math. Phys. 375, No. 1, 237–305 (2020; Zbl 1472.37078)]. To this end, the missing ingredient is a generalization to the case of higher order critical points on the underlying spectral curve of the existing correspondence between the topological recursion and Givental’s theory for cohomological field theories.

MSC:
05E14 Combinatorial aspects of algebraic geometry
05A05 Permutations, words, matrices
05A15 Exact enumeration problems, generating functions
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

Keywords:
Givental’s theory for cohomological field theories

Full Text: DOI arXiv

References:
[12] Dunin-Barkowski, P.; Norbury, P.; Orantin, N.; Popolitov, A.; Shadrin, S., Dubrovin’s superpotential as a global spectral


This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.