Steinhauser, Marc; Sternbeck, André; Wellegehausen, Björn; Wipf, Andreas
$\mathcal{N} = 1$ super-Yang-Mills theory on the lattice with twisted mass fermions. (English)
Zbl 1459.81114

Summary: Super-Yang-Mills theory (SYM) is a central building block for supersymmetric extensions of the Standard Model of particle physics. Whereas the weakly coupled subsector of the latter can be treated within a perturbative setting, the strongly coupled subsector must be dealt with a non-perturbative approach. Such an approach is provided by the lattice formulation. Unfortunately a lattice regularization breaks supersymmetry and consequently the mass degeneracy within a supermultiplet. In this article we investigate the properties of $\mathcal{N} = 1$ supersymmetric SU(3) Yang-Mills theory with a lattice Wilson Dirac operator with an additional parity mass, similar as in twisted mass lattice QCD. We show that a special 45° twist effectively removes the mass splitting of the chiral partners. Thus, at finite lattice spacing both chiral and supersymmetry are enhanced resulting in an improved continuum extrapolation. Furthermore, we show that for the non-interacting theory at 45° twist discretization errors of order $O(a)$ are suppressed, suggesting that the same happens for the interacting theory as well. As an aside, we demonstrate that the DD α AMG multigrid algorithm accelerates the inversion of the Wilson Dirac operator considerably. On a $16^3 \times 32$ lattice, speed-up factors of up to 20 are reached if commonly used algorithms are replaced by the DD α AMG.

MSC:
81T60 Supersymmetric field theories in quantum mechanics
81V74 Fermionic systems in quantum theory
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems

Keywords:
lattice QCD; lattice quantum field theory; supersymmetric gauge theory

Full Text: DOI arXiv

References:
Heidelberg Academy of Sciences and Humanities

Bergner, G.; Giudice, P.; Münster, G.; Montvay, I.; Piemonte, S., The light bound states of supersymmetric SU(2) Yang-Mills theory, JHEP, 03, 080 (2016) - Zbl 1388.81773

Münster, G.; Stüwe, H., The mass of the adjoint pion in \(\mathcal{N} = 1 \) supersymmetric Yang-Mills theory, JHEP, 05, 034 (2014) - Zbl 1333.81267

Musberg, S.; Münster, G.; Piemonte, S., Perturbative calculation of the clover term for Wilson fermions in any representation of the gauge group SU(N), JHEP, 05, 143 (2013) - Zbl 1342.81605

JLQCD collaboration, Lattice study of 4d \(\mathcal{N} = 1 \) super Yang-Mills theory with dynamical overlap gluino, PoS(LATTICE2011)069 [arXiv:1111.2180] [INSPIRE].

Fleming, GT; Kogut, JB; Vranas, PM, SuperYang-Mills on the lattice with domain wall fermions, Phys. Rev. D, 64 (2001)

August, D.; Steinhauser, M.; Wellegehausen, BH; Wipf, A., Mass spectrum of 2-dimensional \(\mathcal{N} = 2 \) super Yang-Mills theory on the lattice, JHEP, 01, 099 (2019) - Zbl 1409.81137

D. Schaich, S. Catterall, P.H. Damgaard and J. Giedt, Latest results from lattice N = 4 supersymmetric Yang-Mills, PoS(LATTICE2016)211 [arXiv:1611.06561] [INSPIRE].

Giguère, E.; Kadoh, D., Restoration of supersymmetry in two-dimensional SYM with sixteen supercharges on the lattice, JHEP, 05, 082 (2015) - Zbl 1388.81149

Alpha collaboration, Lattice QCD with a chirally twisted mass term, JHEP08 (2001) 058 [hep-lat/0101001] [INSPIRE].

Zbl 1020.81047
European Mathematical Society
Zbl 1360.81004
Zbl 63.1400.05

Kuberski, S., Bestimmung von Massen in der supersymmetrischen Yang-Mills-Theorie mit der Variationsmethode (2017), Masterarbeit: Westfälische Wilhelms-Universität Münster, Münster, Germany, Masterarbeit

Fierz, M., Zur Fermischen Theorie des β-Zerfalls, Z. Phys., 104, 553 (1937) · Zbl 63.1400.05

P. B. Pal, Representation-independent manipulations with Dirac spinors, physics/0703214 [INSPIRE].

Luckmann, S., Ward-Identitäten in der N = 1 Super-Yang-Mills-Theorie (1997), Westfälische Wilhelms-Universität Münster, Münster, Germany: Diplomarbeit, Westfälische Wilhelms-Universität Münster, Münster, Germany

Kästner, T., Supersymmetry on a space-time lattice (2008), Dissertation: Friedrich Schiller University Jena, Jena, Germany, Dissertation

R. Sommer, A New way to set the energy scale in lattice gauge theories and its applications to the static force and \(z_2 \) sin SU(2) Yang-Mills theory, Nucl. Phys. B411 (1994) 839 [hep-lat/9310022] [INSPIRE].

Ali, S., The light bound states of \(\mathcal{N} = 1 \) supersymmetric SU(3) Yang-Mills theory on the lattice, JHEP, 03, 113 (2018) · Zbl 1388.81754

RQCD collaboration, Direct determinations of the nucleon and pion σ terms at nearly physical quark masses, Phys. Rev. D93 (2016) 094504 [arXiv:1603.00827] [INSPIRE].

S. Bacchio, DDalphaAMG library including twisted mass fermions, https://github.com/sbacchio/DDalphaAMG.

B. Wellegehausen and A. Wipf, \(\langle \mathcal{N} = 1 \rangle \) supersymmetric SU(3) gauge theory — Towards simulations of super-QCD, PoS(LATTICE2018)210 [arXiv:1811.01784] [INSPIRE].

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.