Edge DP-coloring in planar graphs. (English) | Zbl 1460.05069

Summary: As a generalization of list coloring, DP-coloring of graphs was introduced by Z. Dvořák and L. Postle [J. Comb. Theory, Ser. B 129, 38–54 (2018; Zbl 1379.05034)]. Recently, A. Yu. Bernshteyn and A. V. Kostochka [“On the differences between a DP-coloring and a list coloring”, Mat. Tr. 21, No. 2, 181–205 (2018; doi:10.17377/mattrudy.2018.21.202); translation in Sib. Adv. Math. 29, No. 3, 183–189 (2019; doi:10.3103/S1055134419030039)] introduced edge DP-coloring of graphs which is naturally corresponding to the DP-coloring of their line graphs. Let $\chi'_{DP}(G)$ denote the edge DP-chromatic number of a graph G. In this paper, we prove that if G is a planar graph with maximum degree Δ and without cycles of length k, then (1) $\chi'_{DP}(G) = \Delta$ if either $\Delta \geq 7$ and $k = 4$ or $\Delta \geq 8$ and $k = 3$; (2) $\chi'_{DP}(G) \leq \Delta + 1$ if $\Delta \geq 9$.

MSC:
05C15 Coloring of graphs and hypergraphs
05C10 Planar graphs; geometric and topological aspects of graph theory

Keywords:
edge coloring; edge list coloring; edge DP-coloring; planar graph

Full Text: DOI

References:

[8] Häggkvist, R.; Chetwynd, A., Some upper bounds on the total and list chromatic numbers of multigraphs, J. Graph Theory, 16, 503-516 (1992) · Zbl 0814.05038

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.