Yan, Weiping; Zhang, Binlin
Quasi-periodic relativistic strings in the Minkowski space \mathbb{R}^{1+n}. (English) [Zbl 1461.35017]

Summary: In this article, we consider the motion of relativistic strings in the Minkowski space \mathbb{R}^{1+n}. Those surfaces are known as a timelike minimal surface, and described by a system with n nonlinear wave equations of Born-Infeld type. The one dimensional Born-Infeld equation

$$x_{tt}(1 + x_{\theta}^2) - x_{\theta \theta}(1 - x_t^2) = 2x_t x_{\theta} x_{t\theta}$$

admits an exact time quasi-periodic solution

$$x(t, \theta) = \sin \left((\omega \cdot l) t + \theta \right) - \sin \left((\omega \cdot l) t - \theta \right),$$

where $\omega \in \mathbb{R}^n$ denotes the frequencies, and $l \in \mathbb{Z}^n$. By constructing a suitable Nash-Moser iteration scheme, we prove that relativistic strings can admit a more generalized time quasi-periodic motion in \mathbb{R}^{1+n}. Moreover, those time quasi-periodic solutions are also timelike solutions.

MSC:
35B15 Almost and pseudo-almost periodic solutions to PDEs
35L71 Second-order semilinear hyperbolic equations
37K55 Perturbations, KAM theory for infinite-dimensional Hamiltonian and Lagrangian systems
83C15 Exact solutions to problems in general relativity and gravitational theory

Keywords:
timelike minimal surface; quasi-periodic solution; Nash-Moser iteration; nonlinear wave equations of Born-Infeld type

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.