Mednykh, Aleksandr Dmitrievich

Fixed points of cyclic groups acting purely harmonically on a graph. (English) Zbl 1462.05182

Summary: Let X be a finite connected graph, possibly with loops and multiple edges. An automorphism group of X acts purely harmonically if it acts freely on the set of directed edges of X and has no invertible edges. Define a genus g of the graph X to be the rank of the first homology group. A discrete version of the Wiman theorem states that the order of a cyclic group \mathbb{Z}_n acting purely harmonically on a graph X of genus $g > 1$ is bounded from above by $2g + 2$. In the present paper, we investigate how many fixed points has an automorphism generating a $\frac{3}{4}$ “large” cyclic group \mathbb{Z}_n of order $n \geq 2g - 1$. We show that in the most cases, the automorphism acts fixed point free, while for groups of order $2g$ and $2g - 1$ it can have one or two fixed points.

MSC:
05C30 Enumeration in graph theory
39A10 Additive difference equations

Keywords:
graph; homological genus; harmonic automorphism; fixed point; Wiman theorem

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.