Abdolmaleki, Reza; Kumashiro, Shinya
Certain monomial ideals whose numbers of generators of powers descend. (English)
Zbl 1462.13022

Summary: This paper studies the numbers of minimal generators of powers of monomial ideals in polynomial rings. For a monomial ideal I in two variables, S. Eliahou et al. [J. Algebra 514, 99–112 (2018; Zbl 1403.13033)] gave a sharp lower bound $\mu(I^2) \geq 9$ for the number of minimal generators of I^2 with $\mu(I) \geq 6$. Recently, O. Gasanova [Commun. Algebra 48, No. 11, 4824–4831 (2020; Zbl 1441.13005)] constructed monomial ideals such that $\mu(I) > \mu(I^n)$ for any positive integer n. In reference to them, we construct a certain class of monomial ideals such that $\mu(I) > \mu(I^2) > \cdots > \mu(I^n) = (n+1)^2$ for any positive integer n, which provides one of the most unexpected behaviors of the function $\mu(I^k)$. The monomial ideals also give a peculiar example such that the Cohen-Macaulay type (or the index of irreducibility) of R/I^n descends.

MSC:
13F55 Commutative rings defined by monomial ideals; Stanley-Reisner face rings; simplicial complexes
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
13F20 Polynomial rings and ideals; rings of integer-valued polynomials

Keywords:
number of generators; polynomial ring; monomial ideal

Software:
CoCoA

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.