LeFloch, Philippe G.; Wei, Changhua
Nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FLRW geometry.
(English) Zbl 1464.83026

Summary: We analyze the global nonlinear stability of FLRW (Friedmann-Lemaître-Robertson-Walker) spacetimes in the presence of an irrotational perfect fluid. We assume that the fluid is governed by the so-called (generalized) Chaplygin equation of state $p = -\frac{A}{\rho^{\alpha}}$ relating the pressure to the mass-energy density, in which $A > 0$ and $\alpha \in (0, 1]$ are constants. We express the Einstein equations in wave gauge as a system of coupled nonlinear wave equations and, after performing a conformal transformation, we analyze the global behavior of solutions toward the future. Under small perturbations, the $(3 + 1)$-spacetime metric, the mass-energy density, and the velocity vector describing the geometry and fluid unknowns remain globally close to a reference FLRW solution. Our analysis provides also the precise asymptotic behavior of the perturbed solutions toward the future.

MSC:
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83F05 Relativistic cosmology
35Q31 Euler equations
35Q76 Einstein equations
76Y05 Quantum hydrodynamics and relativistic hydrodynamics

Keywords:
Einstein-Euler equations; FLRW cosmology; generalized Chaplygin gas; conformal transformation; wave gauge

Full Text: DOI

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.