Clemens, Dennis; Liebenau, Anita; Reding, Damian

On minimal Ramsey graphs and Ramsey equivalence in multiple colours. (English) Zbl 1466.05209

Summary: For an integer \(q \geq 2 \), a graph \(G \) is called \(q \)-Ramsey for a graph \(H \) if every \(q \)-colouring of the edges of \(G \) contains a monochromatic copy of \(H \). If \(G \) is \(q \)-Ramsey for \(H \) yet no proper subgraph of \(G \) has this property, then \(G \) is called \(q \)-Ramsey-minimal for \(H \). Generalizing a statement by S. A. Burr et al. [Discrete Math. 54, 1–13 (1985; Zbl 0564.05040)], we prove that, for \(q \geq 3 \), if \(G \) is a graph that is not \(q \)-Ramsey for some graph \(H \), then \(G \) is contained as an induced subgraph in an infinite number of \(q \)-Ramsey-minimal graphs for \(H \) as long as \(H \) is 3-connected or isomorphic to the triangle. For such \(H \), the following are some consequences.

For \(2 \leq r < q \), every \(r \)-Ramsey-minimal graph for \(H \) is contained as an induced subgraph in an infinite number of \(q \)-Ramsey-minimal graphs for \(H \).

For every \(q \geq 3 \), there are \(q \)-Ramsey-minimal graphs for \(H \) of arbitrarily large maximum degree, genus and chromatic number.

The collection \(\{ M_q(H) : H \text{ is 3-connected or } K_3 \} \) forms an antichain with respect to the subset relation, where \(M_q(H) \) denotes the set of all graphs that are \(q \)-Ramsey-minimal for \(H \).

We also address the question of which pairs of graphs satisfy \(M_q(H_1) = M_q(H_2) \), in which case \(H_1 \) and \(H_2 \) are called \(q \)-equivalent. We show that two graphs \(H_1 \) and \(H_2 \) are \(q \)-equivalent for even \(q \) if they are 2-equivalent, and that in general \(q \)-equivalence for some \(q \geq 3 \) does not necessarily imply 2-equivalence. Finally we indicate that for connected graphs this implication may hold: results by J. Nešetřil and V. Rödl [J. Comb. Theory, Ser. B 20, 243–249 (1976; Zbl 0329.05115)] and by J. Fox et al. [ibid. 120, 64–82 (2016; Zbl 1337.05076)] imply that the complete graph is not 2-equivalent to any other connected graph. We prove that this is the case for an arbitrary number of colours.

MSC:

05D10 Ramsey theory
05C55 Generalized Ramsey theory
05C15 Coloring of graphs and hypergraphs

Keywords:
\(q \)-Ramsey graph; chromatic number

Full Text: DOI arXiv

References:

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.