Let G be a simple algebraic group over an algebraically closed field. Let P be a parabolic subgroup of G with abelian unipotent radical P_u, and let L be a Levi subgroup of P. Then G/L is a Hermitian symmetric space. Let B be a Borel subgroup of G contained in P. The Bruhat order on Hermitian symmetric varieties referred to in the title of the article refers to the partial order defined by inclusions of B-orbit closures in G/L. It is named in analogy with the classical Bruhat order, defined by inclusions of Schubert varieties in G/B. Such Schubert varieties are parametrized by elements of the Weyl group of G thanks to the Bruhat decomposition, and the induced partial order on the Weyl group can be encoded in a fully combinatorial way.

The B-orbits in G/L have already been studied, notably by R. W. Richardson and T. A. Springer [Geom. Dedicata 35, No. 1-3, 389-436 (1990; Zbl 0704.20039)]. They are parametrized by combinatorial data as well. The main result of the paper is a combinatorial translation of the partial order alluded to above. This provides a solution to a conjecture of R. W. Richardson and T. A. Springer [Contemp. Math. 153, 109–142 (1993; Zbl 0840.20039), Conjecture 5.6.2].

One ingredient of the proof, which leads to results of independent interest is the following. The inclusion $L \subset P$ provides a homogeneous fibration of G/L onto G/P whose fibers are isomorphic to P/L. Under natural identifications and exponential map, this fiber is isomorphic to the Lie algebra p_u of P_u. Orbits under B behave well under this projection, allowing to approach the problem by studying B-orbit closures in G/P (a well-known variation on the classical Bruhat order) and B-orbit closures in the fibers p_u. The latter is studied as a first step in the present article, providing in particular the final steps to settle a conjecture of D. Panyushev [Transform. Groups 22, No. 2, 503–524 (2017; Zbl 1377.22016), Conjecture 6.2].

Reviewer: Thibaut Delcroix (Montpellier)

MSC:

- 14M27 Compactifications; symmetric and spherical varieties
- 14M15 Grassmannians, Schubert varieties, flag manifolds

Keywords:

- Bruhat order
- Borel orbit
- symmetric variety
- abelian ideal

Full Text: DOI arXiv

References:

